

WBC Virtual Manufacturing Network -

Fostering an Integration of the Knowledge Triangle

University - enterprise cooperations

Assist. Prof. Zoran Jurkovic – project coordinator for Croatia Faculty of Engineering, University of Rijeka

web: http://www.riteh.hr

email: zoran.jurkovic@riteh.hr

Kragujevac, 25.03.2009.

Faculty of Engineering - enterprise cooperations

- A great part of activities at the Faculty is conducted through the cooperation with the economy and other institutions in surroundings. Some of examples will be presented here.
- Collaboration activities include various types of expert education, collaborating projects for the industry and other institutions.
- O Students do their practice in the industry while employers from there come to attend seminars, workshops and to participate in whole-life education programmes or to enrol in the postgraduate professional and scientific study programme.
- O In scope of collaboration with the industry, the Faculty annually organizes the meeting-days called "Days of Open Faculty's Doors", when direct contacts between the people from the economy, the students and teachers take place. Such events give the opportunity for both-side to introduce each other with actual topics, like: new production programmes, new technologies, employment, scholarships, student practice, education programmes etc.
- The most important Faculty's partners from this field are:
 INA, HEP, Shipyard "3. MAJ", Shipyard "Uljanik", Shipyard "Viktor Lenac", Shipyard
 "Kraljevica", SAIPEM, Hrvatske vode Croatian Waters, IGH, CIMOS, DINA, STSI,
 ENERGO, ELCON GERÄTEBAU and others.
- Overview of the Faculty projects for industry http://www.riteh.hr/economy/projects.html

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Project title: SIX SIGMA CONTINUOUS IMPROVEMENTS IN DIE-CASTING PROCEES

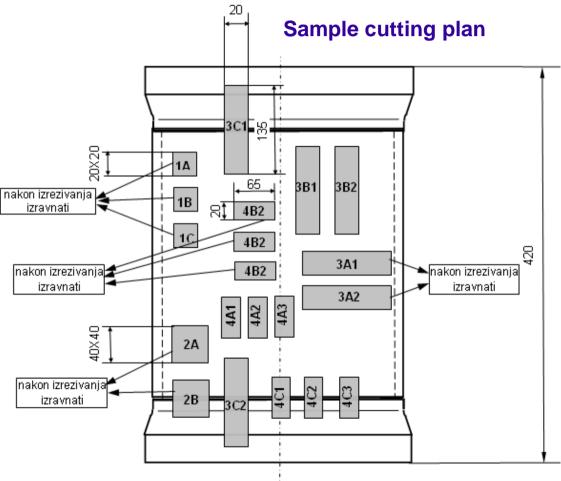
Partner: PS CIMOS – PCC d.o.o., Buzet, Croatia

Objective: To reduce scrap level in die-casting process

	Scrap due mould spraying	Cold shut
Scrap level at the beginning of project	1,92 %	5,75 %
Scrap level at the end of project	0,55 %	2,89 %
Improvement	1,37 %	2,86 %

DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

Project title: INSPECTION OF PIPELINE SEGMENT OF 303 PLATFORMING 1 FACILITY OF OIL REFINERY RIJEKA

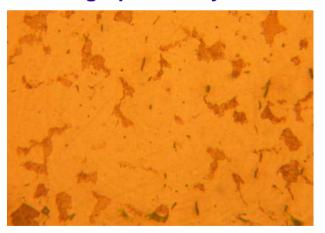

Partner: STSI d.o.o., Zagreb, Croatia

Objective:

- chemical analysis, metallographic analysi mechanical testing

- determination of decla quality

Results:


Chemical analysis

Chemical analysis of sample 1A

Chemical composition	С	Mn	Р	S	Cu*	Ni*	Cr*	Mo*	V*
Declared max, %	0.25	0.95	0.05	0.045	0.40	0.40	0.40	0.15	0.08
Analysis result, %	0.10	0.51	0.02	0.030	0.12	0.08	0.11	0.03	0.00

^{* %}Cu + %Ni + %Cr + %Mo + %V ≤ 1 %

Metallographic analysis

Microanalysis of sample 1A Ferite and pearlite, 2% HNO₃, 500:1

Mechanical testing

Microhardness testing of sample 2B

	Hardness HV10		
	14 110 4	1	123
	pipe	2	125
	ASTM A 53 Gr. A	3	127
	HAZ1	4	144
	HAZ1	5	156
Outside		6	167
<u>5</u>	₩eld	7	174
ดี		8	176
	HAZ2	9	174
	11/1/22	10	176
	flange	11	139
	ASTM A 105 Gr. I	12	142
	AOTHA ICO OILI	13	133
	pipe	14	122
	ASTM A 53 Gr. A	15	127
	AGIINA SO GITA	16	127
	HAZ1	17	138
	1012	18	151
<u>e</u>		19	169
Inside	weld	20	166
드		21	175
	HAZ2	22	190
	11/1/22	23	179
	flange	24	149
	ASTM A 105 Gr. I	25	147
	VALISIV 165-21' I	26	142

13 12 11 10 9 8 7 6 5 4 3 2 1	
prirubnica ZUT2 zavar / ZUT1 cijev	VI CV
26 25 24 23 22 21 2019 18 17 16 15 14	

Mechanical testing

Tension tensile test results of sample 3A1

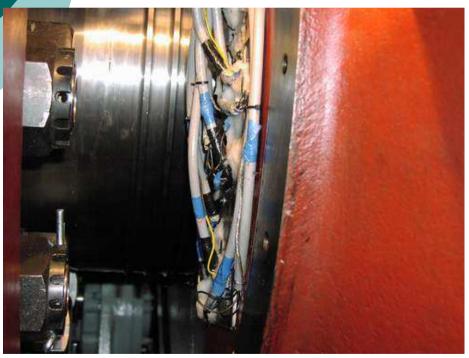
	Yield	I strength	Ultimate tensile strength		Elongation		Contraction
	F _e kN	$R_{ m e}$ N/mm²	F _m kN	R _m N/mm²	Elongation at 50.8 mm %	A _{5,65} %	Z %
Declared ASTM A 53 Gr. A	/	205	/	330	24	25	/
Analysis result	16.7	332	21.5	428	28	36	70

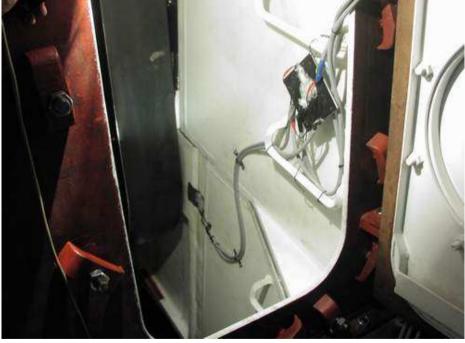
Charpy "V" impact tests results

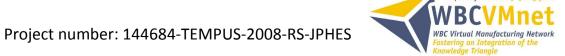
Sample (ISO-V)	KV, J
4A1	120
4A2	192
4A3	202
4B1	83
4B2	82
4B3	83
4C1	152
4C2	103
4C3	62

Department's industrial partners:

- STSI d.o.o.
- Oil Rafinery Rijeka d.d.
 - NAVI-MARIN d.o.o.
 - ZAVAR d.o.o., etc.

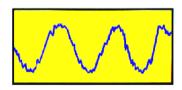


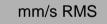

DEPARTMENT OF ENGINEERING MECHANICS


Project title: STRAIN GAGE MEASUREMENTS AND NUMERICAL ANALYSIS AT A SHIP ENGINE

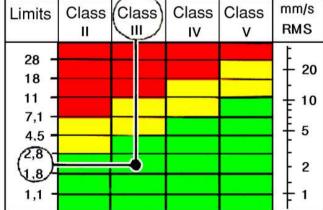
Partner: Shipyard "3. Maj", Rijeka, Croatia

Objective: Strain measurement at bearings (verification of technical characteristics)




Project title: MECHANICAL VIBRATION

Objective: Evaluation of machine vibration by measurements on nonrotating parts (ISO 10816) (verification of technical characteristics)



10-1000 Hz

Department's industrial partners:

- DINA Petrokemija d.d.
 - LUKA Rijeka d.d.
- INA industrija nafte d.d., etc.

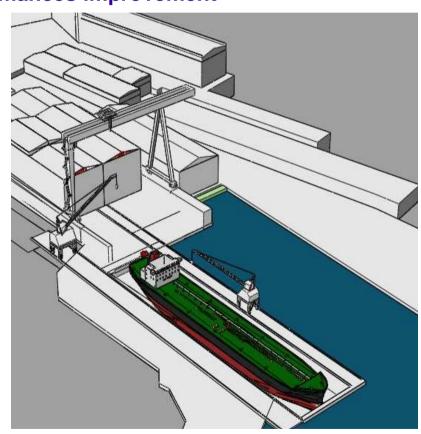
DEPARTMENT OF SHIPBUILDING TECHNOLOGY AND ORGANISATION

Partner: Shipyard "3. Maj", Rijeka, Croatia

Objective: Process modeling for throughput improvement

Project titles:

- 1. Analysis of Material Flow in the Prefabrication and Fabrication Phases of the Hull Elements, (2005)
- 2. Profile Process Model, (2004)
- 3. Pipe Process Model, (2002)
- 4. Panel Fabrication Model, (2002)

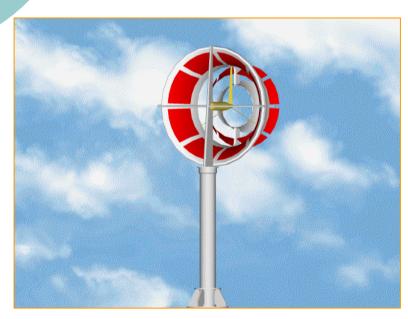


Partner: Shipyard "Kraljevica", Kraljevica, Croatia

Objective: Shipyard design for performances improvement

Project titles:

- 1. Shipyard Technological Modernization Project, (2006)
- 2. Technological Study of the Pipe Workshop, (2006)
- 3. Slipway Reassignment to a Horizontal Plateau for Final Hull Assembly, (2008)
- 4. Dry Dock and New Sub-Assembly Workshop Conceptual Design, (2008)


DEPARTMENT OF THERMODYNAMICS AND ENERGY ENGINEERING

Project title: PROTOTYPE OF WIND TURBINE IN NOZZLE

Partner: Bimont d.d., Kukuljanovo, Croatia (author of concept - Ivan Vrsalovic)

Objective:

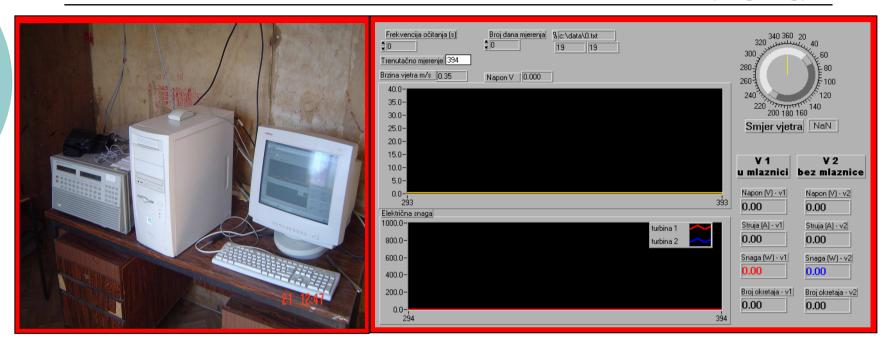
- 1. wind turbine prototype producing with nozzle optimization
- 2. verification of technical characteristics measurement

"3. MAJ d.d., Rijeka

MHI d.o.o., Rijeka

Objective:

1. wind turbine prototype producing with nozzle optimization



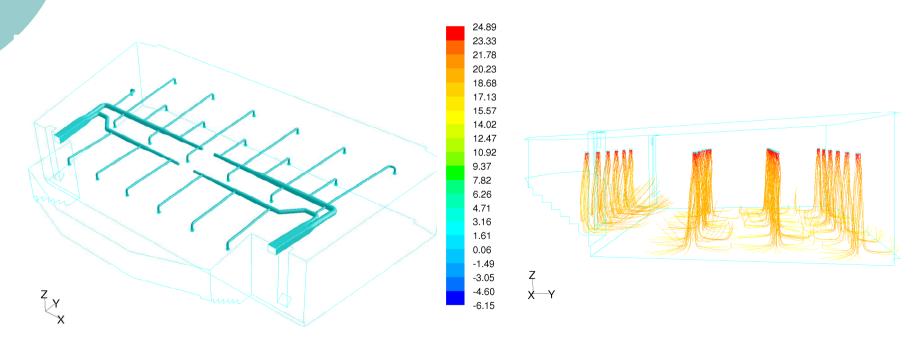
BIMONT d.d., Kukuljanovo

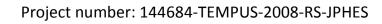
Objective:

2. verification of technical characteristics – measurement (ongoing)

Expected results:

- energy efficiency 3-4 times in comparation with regular wind turbine without nozzle,
- efficiently velocity control in optimal range, useful at weak wind.

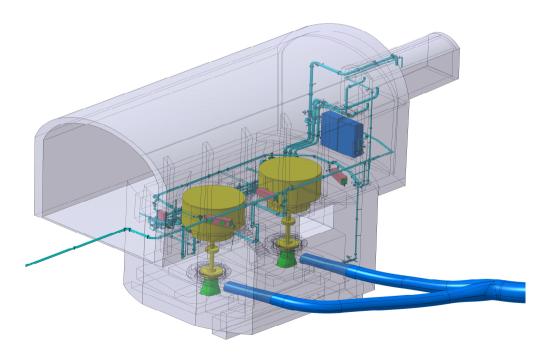



Project title: ENERGY STUDY AND ANALYSIS OF OPTIMAL SOLUTION FOR AIR CONDITIONING OF SPORTS FACILITIES

Partner: City of Rijeka, Croatia

Objective:

- analysis of optimal solution for air conditioning,
- optimization of heat distribution systems,
- using heat pump with seawater as heat source.

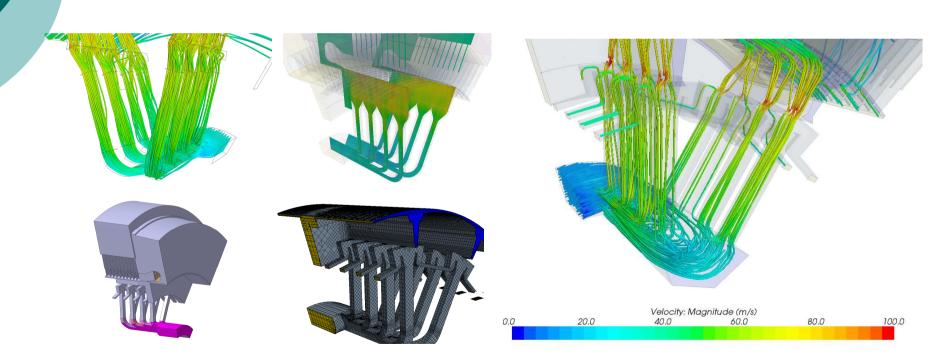


Project title: COOLING PIPE AND AIR CONDITIONING SYSTEMS IN HYDROELECTRIC POWER PLANT

Partner: HEP - PP HE Zapad d.d, Rijeka, Croatia

Objective:

 energy efficiency solution with combination of self-cooling and process cooling.


DEPARTMENT OF THERMODYNAMICS AND ENERGY ENGINEERING & DEPARTMENT OF FLUID MECHANICS AND COMPUTATIONAL ENGINEERING

Project title: OPTIMIZATION GEOMETRY OF HYDRO GENERATOR

Partner: HEP - PP HE Zapad d.d, Rijeka, Croatia

Objective:

• achieve of minimal flow losses by optimal geometry of hydro generator

THANK YOU FOR YOUR ATTENTION AND PATIENCE