

Innovation in engineering design

2nd – 3th November 2010, University of Kragujevac

Workshop "Innovation in engineering design"

29 - 30 November 2010, Kragujevac

M5 computations in production engineering and technologie

Tomaž Rodič

Faculty of Natural Sciences and Engineering

University of Ljubljana

Name/s of presenter/s

This project has been funded with support from the European Commission

M5 application areas

Multi-field problems

Coupled analyses of mechanical – thermal - magnetic fields when combining radial forging with inductive heating

Radial forging

roject Tool radial for radial so	material Process Analy rging version 1.0 adial Forging v.1.0 -> res_11 Project Tool Material Please cho	vsis Po Proces se the too	int post Line post Mesh pos	st Report	ost Report			
project d				flat_def				CONTROL OF
C:\dev\ja	Inlet angle	30	Radial Forging v.1.0 -> res_1	1				
C	Outlet angle Length of inlet zone Length of outlet zone Length of sizing zone	-30 15 15 180	Project Tool Material	Process Ar	alysis Point post Line post Mesh nsee (fixed q) ▼ yield curv material sets	e fit data		
			Elastic Modulus	200000	plansee_def Radial Forging v.1.0 -> raftest	47.13722195087()	_	
			Initial density	0.95	Project Tool Material Proces	s Analysis Point post L	ine post Mesh post Report	
_			A	0.00103				
			t	13.45584		Raulai Forging V.1.0 -> res_11		
			q1	1		Project I ool Material	Process Analysis Point post	Line post Mesh post Report
			q2	1		🗹 point report	🗹 mesh report	pass no.
PLA	NSEE		q3	1	please choose the mesh der result ouptut frequency pass one	Gs3 Ls1 Ls2 Ls3 Normal contact stress Normal gap Plast mult. Sliding distance Smax Smin SP3_MI SP3PEPOS Spring force X Spring force X 4		

Real and virtual process simulations

Cold precision forming

Damage at macro & micro scales

Press deflections

Stochastic interactions

Code development system

Mechanical forming of shaped cans

Polymer coated sheets

Saline test performance of polymer coated cans

$$\sigma_{kk}(t,\mathbf{r}) = 3\int_{0}^{t} K[t'(t,\mathbf{r}) - \lambda'(t,\mathbf{r})] \frac{\partial \theta(\lambda,\mathbf{r})}{\partial \lambda} d\lambda \qquad S_{ij}(t,\mathbf{r}) = 2\int_{0}^{t} G[t'(t,\mathbf{r}) - \lambda'(t,\mathbf{r})] \frac{\partial e_{ij}(\lambda,\mathbf{r})}{\partial \lambda} d\lambda$$

K ... bulk modulus , G ... shear relaxation modulus, t' ... material time

$$t'(t,\mathbf{r}) - \lambda'(t,\mathbf{r}) = \int_{\lambda}^{t} \frac{d\xi}{\Phi[T(\xi,\mathbf{r}),\theta(\xi,\mathbf{r})]}$$
$$\log \Phi[T(\xi,\mathbf{r}),\theta(\xi,\mathbf{r})] = \frac{b}{2.303} \left\{ \frac{1}{f[T(\xi,\mathbf{r}),\theta(\xi,\mathbf{r})]} - \frac{1}{f_0} \right\} \quad \dots \text{ shift function}$$
$$f[T(\xi,\mathbf{r}),\theta(\xi,\mathbf{r})] \quad \dots \text{ intermolecular volume}$$

 $f\left[T(\boldsymbol{\xi}, \mathbf{r}), \boldsymbol{\theta}(\boldsymbol{\xi}, \mathbf{r})\right] = f_0 + f_T + f_{\theta}$

M \ldots bulk creep complience , α \ldots thermal expansion

$$f_T = \int_0^t \alpha(t - \lambda, \mathbf{r}) \frac{\partial T(\lambda, \mathbf{r})}{\partial \lambda} d\lambda \qquad f_\theta = \int_0^t M(t - \lambda, \mathbf{r}) \frac{\partial \sigma_{kk}(\lambda, \mathbf{r})}{\partial \lambda} d\lambda$$

Knauss WG, Emri IJ. Non-Linear Viscoelasticity based on Free-Volume Consideration, Computers & Structures, 13(1-3): 123-128 1981. Knauss WG, Emri I. Volume Change and the Nonlinearly Thermoviscoelastic Constitution of Polymers, Polymer Engineering and Science, 27(1): 86-100 1987.

Molecular dynamics: silane molecules on the surface of zinc oxide

(a)

(b)

(C)

Accelrys Materials Studio 3.0, Accelrys Software, Inc.: San Diego, http://www.accelrys.com/products/mstudio/

- A. Kornherr, S. Hansal, W.E.G. Hansal, G.E. Nauer, and G. Zifferer, Molecular dynamics simulations of the first steps of the formation of polysiloxane layers at a zinc oxide surface, Macromol. Symp., 2004, 217, 295-300.
- S. Kisin, J. Bozovic Vukic, P.G.Th. van der Varst, G. de With & C.E. Koning Estimating the Polymer-Metal Work of Adhesion from Molecular Dynamics Simulations, *Chem. Mater.* 2007, *19*, 903-907

Preoblikovanje polimerno-kovinskih laminatov

Can manufacturing

Estimated temperature increase in PET at the ring side

H.K. Tönshoff, H. Hillmann-Apmann, J. Asche, Diamond tools in stone and civil engineering industry: cutting principles, wear and applications, Diamond and Related Materials 11 (2002) 736–741

M5 modelling of the Cofiplast stone cutting process

6

matrix

secondary chip

Heat transfer (FEM)

Modeling of dissipation processes

Fluid simulations (FVM)

- Flow phenomena in the bit-stone area
- Estimates of aquaplaning effects

Macroscopic modeling of friction and abrasion

- Contact forces by Striebeck friction law
- Abrasion by Archard law

Micro mechanical modeling and analysis of cutting process (DEM)

- DE analysis with rigid particles in elastic potential
- DE analysis with elasto-plastic finite elements

Fgrt

Fgrn

 tangential force per grain
 normal force

് swarf ഗ്

stone

per grain = cutting velocity

Flow Analysis – Velocity Profile

Meso-scale model of cutting process

• Geometry and SEM pictures of the structure and associated FEM model

Micro-scale cutting model – FEM-DEM with rigid body particles

- Model:
 - Particle dynamics: Newtonian law of motion
 - Particles contact: elastic potential with treshold spring rupture distance

Figure 21: Effect of adhesion parameter on the cutting depth. In this case the adhesion parameter was set too low and the material is too brittle, resulting in very deep crack growth which would lead to extremely fast cutting.

Multi-scale model Micro –breakage mechanisms **Macro - impact scenarios** 34

Stirred media mill

Grinding media impact statistics

Fractal aggregates

Inter-molecular distance	2.0 × 10 ⁻¹⁰ m
Hamaker Constant	8.5 × 10 ⁻¹⁹
Elementary charge of the proton	1.6 × 10 ⁻¹⁹
lon concentration in the solution	1.0 × 10 ⁻²⁹
Surface potential	0.015 mV
Debye screening parameter	1.9 × 10 ⁹

Structure of large agglomerates

Prisma (2009)

MEMS micropropulsion for precise manoeuvring of satellites

Remote sensing of Slovenia

Lapan-Tubsat test

Koper, 25.6.2008

Strategija kontrole

Plane: 10km (60 times lower), 0,25 km/s (30 times slower)

tomaz.rodic@omm.ntf.uni-lj.si